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ABSTRACT
We analyse the small-scale clustering in ‘MegaZ-LRG’, a large photometric redshift catalogue

of luminous red galaxies extracted from the imaging data set of the Sloan Digital Sky Survey.

MegaZ-LRG, presented in a companion paper, spans the redshift range 0.4 < z < 0.7 with

an rms redshift error σ z ≈ 0.03(1 + z), covering 5914 deg2 to map out a total cosmic vol-

ume 2.5 h−3 Gpc3. In this study we use 380 000 photometric redshifts to measure significant

deviations from the canonical power-law fit to the angular correlation function in a series of

narrow redshift slices, in which we construct volume-limited samples. These deviations are

direct signatures of the manner in which these galaxies populate the underlying network of dark

matter haloes. We cleanly delineate the separate contributions of the ‘one-halo’ and ‘two-halo’

clustering terms and fit our measurements by parametrizing the halo occupation distribution

N(M) of the galaxies. Our results are successfully fitted by a ‘central’ galaxy contribution

with a ‘soft’ transition from zero to one galaxy, combined with a power-law ‘satellite’ galaxy

component, the slope of which is a strong function of galaxy luminosity. The large majority of

galaxies are classified as central objects of their host dark matter haloes rather than satellites

in more massive systems. The effective halo mass of MegaZ-LRG galaxies lies in the range

log10(Meff/h−1 M�) = 13.61–13.80 (increasing with redshift assuming large-scale normal-

ization σ 8 = 0.8) for corresponding number densities in the range ng = 5.03−0.56 ×
104 h−3 Mpc−3. Our results confirm the usefulness of the halo model for gaining physical

insight into the patterns of galaxy clustering.
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1 I N T RO D U C T I O N

Photometric redshift surveys offer a route to delineating the large-

scale structure of the Universe that is increasingly competitive

with spectroscopic redshift surveys (Budavari et al. 2003; Seo &

Eisenstein 2003; Amendola, Quercellini & Giallongo 2005;

Dolney, Jain & Takada 2004; Blake & Bridle 2005; Phleps et al.

2006; Zhan et al. 2006; Blake et al. 2007; Padmanabhan et al. 2007).

The ease with which modern imaging surveys can map large areas

of sky to faint magnitude limits compensates for the absence of

precise (but time-consuming) spectroscopic redshift measurements

for individual galaxies. An absolute prerequisite, however, is the

availability of high-quality photometric galaxy redshifts with known

error distributions (established e.g. via spectroscopy of subsamples),

together with accurate survey photometric calibration over large an-

�E-mail: cblake@astro.swin.edu.au

gles of sky. Recent observational efforts have enabled both of these

criteria to be satisfied.

The Sloan Digital Sky Survey (SDSS; York et al. 2000) has now

provided an accurately calibrated imaging data set over roughly a

fifth of the sky, which can be used to extract samples of galaxies in

a uniform manner. In particular, a photometric catalogue of lumi-

nous red galaxies (LRGs) can be readily extracted using a series of

well-understood colour and magnitude cuts (Eisenstein et al. 2001).

Owing to their high luminosity and typical residence in the most

massive dark matter haloes, LRGs are efficient tracers of cosmic

structure across large volumes (Brown et al. 2003; Zehavi et al.

2005a; Eisenstein et al. 2005b). Moreover, these objects provide

particularly reliable photometric redshifts owing to the strong spec-

tral break at ≈4000 Å in the galaxy rest frame and the consequent

rapid variation with redshift of their observed colours in the SDSS

filter system (Padmanabhan et al. 2005; Collister et al. 2007). Fur-

thermore, the photometric redshift error distribution of the LRGs

can be accurately calibrated owing to the existence of spectroscopic

observations of a subsample as part of the 2dF–SDSS LRG
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and Quasar (2SLAQ) survey at the Anglo-Australian Telescope

(Cannon et al. 2006).

The combination of these data sets has allowed us to con-

struct a large catalogue of more than 106 LRGs spanning the red-

shift range 0.4 < z < 0.7 with an rms photometric redshift error

σz ≡
√

〈(δz)2〉 − 〈δz〉2 ≈ 0.03(1 + z) where δz ≡ zphot − zspec. We

have dubbed this catalogue ‘MegaZ-LRG’ (Collister et al. 2007).

The data base covers almost 6000 deg2, or an effective volume

≈2.5 h−3 Gpc3. We have already used this catalogue to measure the

large-scale clustering of the galaxies on linear and quasi-linear scales

via a power spectrum analysis and thereby extract measurements of

cosmological parameters (Blake et al. 2007; see also Padmanabhan

et al. 2007). In this study we turn to the small-scale clustering prop-

erties of the LRGs. Our goal is to present new measurements of the

small-scale correlation function of LRGs at z ∼ 0.5, and to connect

these measurements to the physical manner in which these LRGs

populate dark matter haloes.

It has long been known that different classes of galaxy possess

different clustering properties, in a manner connected to their small-

scale environments (for recent observational studies we refer the

reader to Norberg et al. (2002); Budavari et al. (2003); Hogg et al.

(2003); Zehavi et al. (2005b), and references therein). For many

years these differing clustering properties could be adequately de-

scribed by fitting a simple power-law function to the two-point

galaxy correlation function on small scales (Peebles 1980). How-

ever, recent surveys have measured the clustering pattern accurately

enough to detect deviations from the canonical clustering power

law (e.g. Hawkins et al. 2003; Zehavi et al. 2004; Zheng 2004;

Eisenstein et al. 2005a; Zehavi et al. 2005a,b; Phleps et al. 2006).

These deviations provide an important insight into the processes of

galaxy formation.

The richer structure in the galaxy clustering pattern revealed by

recent surveys has been successfully interpreted in terms of the ‘halo

model’ (e.g. Peacock & Smith 2000; Seljak 2000; Scoccimarro et al.

2001; Berlind & Weinberg 2002; Cooray & Sheth 2002; Kravtsov

et al. 2004; Zehavi et al. 2004; Zheng 2004; Collister & Lahav

2005; Tinker et al. 2005; Zehavi et al. 2005b; Zheng et al. 2005). In

this model, the small-scale clustering of a distribution of galaxies is

linked to the underlying network of dark matter haloes, whose prop-

erties can be measured using cosmological simulations. A class of

galaxies are assumed to populate haloes in accordance with a statis-

tical ‘halo occupation distribution (HOD)’ as a function of the halo

mass. The clustering then naturally separates into two components:

the distribution of galaxies within individual haloes, which domi-

nates on small scales (�1 Mpc), and the mutual clustering of galaxies

inhabiting separate haloes, which dominates on larger scales (�1

Mpc). The combination of these two terms can accurately model

the observed scale-dependent features in the small-scale clustering

pattern.

The outline of this paper is as follows. In Section 2, we briefly

describe the ‘MegaZ-LRG’ data set. We then present measurements

of the angular correlation function in narrow redshift slices together

with simple power-law fits in Section 3. In Section 4, we intro-

duce the framework of the halo model and in Section 5 we refit the

clustering measurements by parametrizing the HOD of the LRGs,

comparing our results to previous work in Section 6. Section 7 in-

vestigates a range of potential systematic photometric errors in the

catalogue that may bias our results. We conclude in Section 8.

Throughout this study, we assume a fixed set of large-scale cos-

mological parameters: fractional matter density �m = 0.3, cosmo-

logical constant �� = 0.7, curvature �k = 0, Hubble parameter

h = 0.7, fractional baryon density f b = �b/�m = 0.15, slope of the

primordial power spectrum ns = 1, and overall normalization of the

power spectrum σ 8 = 0.8. These values are consistent with fits to

the large-scale power spectrum of the LRGs (Blake et al. 2007) and

to the latest measurements of the anisotropy spectrum of the cosmic

microwave background (CMB) (Spergel et al. 2007). We note that

there is some degeneracy between the assumed cosmological pa-

rameters and the fitted halo-model parameters, and we investigate

how the best-fitting halo-model parameters depend on the values of

σ 8 and ns.

2 T H E DATA S E T

We analyse angular clustering in the ‘MegaZ-LRG’ galaxy data

base, a photometric redshift catalogue of LRGs based on the imag-

ing data set of the SDSS fourth Data Release. The construction of

this catalogue is described in detail by Collister et al. (2007), and

cosmological-parameter fitting to the angular power spectrum is

presented by Blake et al. (2007). We only provide a brief descrip-

tion of the catalogue here, referring the reader to these two papers

for more information.

MegaZ-LRG contains over 106 LRGs spanning the redshift range

0.4 < z < 0.7 with an rms redshift error δz ≈ 0.03 (1 + z). The

angular selection function is described by Blake et al. (2007) and

encompasses 5914 deg2 (the three southern SDSS stripes are ex-

cluded). The sample was selected from the SDSS imaging data

base using a series of colour and magnitude cuts (Eisenstein et al.

2001; Collister et al. 2007), which amount to a magnitude-limited

sample of LRGs with i-band magnitudes 17.5 < i < 20. Photo-

metric redshifts were derived for these galaxies using an Artificial

Neural Network method, ANNz (Firth, Lahav & Somerville 2003;

Collister & Lahav 2004), constrained by a spectroscopic subsample

of ≈13 000 galaxies obtained by the 2SLAQ survey (Cannon et al.

2006). In this paper, we analyse a ‘conservative’ version of the data

base in which the selection cuts applied to the imaging data base

are identical to those used to produce the great majority of the spec-

troscopic subsample (e.g. the faint magnitude limit is brightened to

i = 19.8). Star–galaxy separation cuts were applied both in the initial

selection from the SDSS data base and via the neural network anal-

ysis. These cuts produced a catalogue with 644 903 entries, amongst

which there is a 1.5 per cent M-star contamination (see Blake et al.

2007).

We used the photometric redshifts to divide the sample into four

narrow redshift slices of width �zphot = 0.05 between z = 0.45

and 0.65 (there are very few galaxies in the catalogue outside this

redshift range). We then applied a luminosity threshold in each red-

shift range to create a ‘volume-limited’ sample of galaxies, as as-

sumed by the halo model. The luminosity threshold is given by

the faint apparent magnitude limit i = 19.8 applied at the most-

distant redshift of each slice. We calculated luminosities for each

galaxy using LRG K-corrections from the 2SLAQ survey (Wake

et al. 2006), not including an evolution correction. The faint abso-

lute i-band magnitude limits for each redshift slice are then Mi −
5 log10 h = (−22.23, −22.56, −22.87, −23.20). The number of

galaxies remaining in each redshift slice after the luminosity cut

was N = (168287, 118863, 70229, 27203) with corresponding sur-

face densities (28.5, 20.1, 11.9, 4.6) deg−2. The spectroscopic red-

shift distribution of galaxies in each photo-z slice (including the

luminosity cut) can be deduced using the 2SLAQ spectroscopic

subsample. As shown by Blake et al. (2007), the spec-z probability

distribution for each slice is well described by a Gaussian function;

the mean μ and standard deviation σ for each photo-z slice are listed

in Table 1 (note that these values are slightly different from those
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Table 1. Power-law fits to the angular correlation function in the four redshift slices. Column 2 records the surface density of the galaxy

sample in each redshift slice. Column 3 is the threshold galaxy absolute i-band magnitude in each slice for the volume-limited sample.

Columns 4 and 5 list the parameters of the Gaussian redshift distribution for each slice, p(z) ∝ exp[−(z − μ)2/2σ 2]. Columns 6 and

7 show the best-fitting power-law parameters w(θ ) = a θ1−γ , where θ is in degrees. The associated errors for a and γ are obtained by

marginalizing over values of the other parameter. Note that the amplitudes have been corrected upwards by a stellar contamination factor

(1 − f )−2 = 1.03. Column 8 is the corresponding χ2-statistic χ2
pl evaluated using the full covariance matrix (which we compare with

25 degrees of freedom). Columns 9 lists the inferred galaxy clustering length r0 of the spatial correlation function ξ (r) = (r/r0)−γ .

Redshift slice Density Mi − 5 log10 h μ σ 102 × a γ χ2
pl r0

(deg−2) (degγ−1) (h−1 Mpc)

0.45 < z < 0.5 28.5 −22.23 0.476 0.034 2.84 ± 0.12 1.96 ± 0.01 177.1 7.2 ± 0.2

0.5 < z < 0.55 20.1 −22.56 0.528 0.040 2.79 ± 0.14 1.96 ± 0.01 132.8 8.0 ± 0.2

0.55 < z < 0.6 11.9 −22.87 0.574 0.043 2.93 ± 0.18 1.94 ± 0.02 71.8 8.5 ± 0.3

0.6 < z < 0.65 4.6 −23.20 0.629 0.052 2.78 ± 0.19 1.94 ± 0.02 34.9 9.3 ± 0.3

listed in Blake et al. 2007, due to the additional luminosity threshold

applied in this study). These redshift distributions are used to project

the model correlation function to fit the observed angular clustering

in each slice.

3 A N G U L A R C O R R E L AT I O N F U N C T I O N
M E A S U R E M E N T S

3.1 Method

We used the Landy & Szalay (1993) estimator to measure w(θ ) for

each photometric redshift slice in 30 logarithmically spaced angular

separation bins between θ = 0.◦001 and 1◦. For each redshift slice

we generated 10 random data sets across the survey geometry, each

containing the same number of galaxies as the survey data sets.

We assume that the 1.5 per cent stellar contamination is distributed

evenly across the redshift slices in an unclustered fashion such that

the amplitude of the measured angular correlation function is simply

reduced by a constant factor (1 − f )2 where f = 0.015. We corrected

our estimates of w(θ ) and corresponding errors upwards by this

factor (of 3.0 per cent).

3.2 Error determination

We estimated the covariance matrix of the errors in the separation

bins using the technique of jack-knife resampling. For each mea-

surement of w(θ ) we divided the survey area into N = 393 subfields

of constant area (of 13.3 deg2) using a grid of right ascension and

declination divisions (see Fig. 1). When creating the grid, we al-

lowed a subfield to contain up to 20 per cent fractional area beyond

survey edges or of survey holes. The number of subfields was chosen

to be sufficient for estimating each unique element of the covariance

matrix used in the model fitting with statistical independence. How-

ever, we checked that our best-fitting parameters did not depend on

the number of subfields, or on the restriction of our fits to the most

significant principal components of the covariance matrix using sin-

gular value decomposition techniques.

Having defined the grid of N subfields, we then measured w(θ ) N
times, which we label as wi (θ ) from i = 1 to N, in each case omitting

just one of the subfields (and using the remaining N − 1 fields). The

covariance of the measurements between separation bins j and k was

deduced as

C jk ≡ 〈w(θ j ) w(θk)〉 − 〈w(θ j )〉〈w(θk)〉 (1)

Figure 1. The grid of N = 393 subfields of equal area, defined by constant

right ascension and declination boundaries, which was used to estimate the

error in the angular correlation function via jack-knife resampling of the

measurement.

Figure 2. The error in the angular correlation function determined by jack-

knife resampling for the four redshift slices, normalized by the result assum-

ing simple Poisson statistics.

≈ (N − 1)

[∑N
i wi (θ j )wi (θk)

N
− w(θ j ) × w(θk)

]
, (2)

where w(θ j ) = ∑N
i wi (θ j )/N .

Fig. 2 plots the jack-knife errors in the separation bins for each

redshift slice, normalized by the error determined assuming simple

Poisson statistics (for which the error in the data pair count of DD

objects in a separation bin is
√

DD). For most of the angular range
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Figure 3. A grey-scale plot of the correlation coefficient r of equation (3),

indicating the degree of covariance between different separation bins for

each redshift slice. The correspondence of r to the grey-scale is chosen as

r = −0.5 (white) to r = 0.5 (black).

under investigation, the jack-knife errors are less than 50 per cent

higher than those predicted by Poisson statistics. For the largest an-

gular scales θ considered, the jack-knife error increases relative to

the Poisson error, owing to the increasing importance of edge effects

and the heightened ‘cosmic variance’ owing to the reduced number

of independent cells of size θ that can be accommodated by the data

set. This is the familiar result from clustering measurements that

Poisson noise dominates on small scales, and cosmic variance dom-

inates on large scales. The full covariance matrices are displayed in

Fig. 3 by plotting in grey-scale the ‘correlation coefficient’ between

Figure 4. The measured angular correlation function in the four redshift slices together with the best-fitting power laws. The turnover of the correlation

function towards very small angular separations is not a property of galaxy clustering; we restrict our fit to separations θ > 0.◦002. The comoving spatial scale

corresponding to an angular separation 0.◦1 at the median redshift of each slice is displayed in the bottom left-hand corner of each plot.

two separation bins i and j:

r (i, j) = Cov(i, j)√
Cov(i, i) Cov( j, j)

. (3)

Angular correlation function measurements in large-separation

bins are positively correlated. The amplitude of these correlations

decreases with redshift because, as the number density of the sample

reduces, Poisson noise becomes more important compared to cosmic

variance. These covariance matrices are always used in our model

fitting.

3.3 Power-law fits

As an initial step we fitted power laws w(θ ) = a θ1−γ to the mea-

sured angular correlation functions in the four redshift slices (using

χ 2-minimization with the full covariance matrix). We excluded the

first three data points with separations θ < 0.◦002( = 7 arcsec), as

these scales are potentially affected by astronomical seeing and is-

sues of galaxy merging and blending (the decrease in the value of the

correlation functions at the smallest scales in Fig. 4 is not a property

of galaxy clustering). The best-fitting power-law parameters (a, γ )

are listed in Table 1 and the models and data points are displayed

in Fig. 4. The best-fitting slopes γ for the redshift slices take values

in the range 1.94–1.96, consistent with previous studies of LRGs

(e.g. Eisenstein et al. 2005a; Zehavi et al. 2005a). However, as indi-

cated by the high values of the minimum χ 2-statistic χ2
pl in Table 1

compared to the 25 degrees of freedom, a power law is not a good fit

to the data. The fact that we detect deviations from simple power-law

clustering with high significance indicates that our photo-z survey

can be used to fit more complex and physically-insightful models

to the small-scale clustering pattern.

Nevertheless, we can use the power-law amplitude of the angu-

lar clustering to estimate the three-dimensional clustering length

r0 of the population of galaxies, using the known redshift distribu-

tion p(z) in each slice. If we define the spatial two-point correlation
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function ξ (r) = (r/r0)−γ , then the amplitude of the power-law an-

gular correlation function w(θ ) = a θ1−γ follows from Limber’s

equation:

a = Cγ r γ

0

∫
dz p(z)2

(
dx

dz

)−1

x(z)1−γ , (4)

where x(z) is the comoving radial coordinate at redshift z and

Cγ = �( 1
2
)�( γ

2
− 1

2
)/�( γ

2
). In Table 1, we determine the corre-

sponding values of r0 and γ for each redshift slice. The amplitude

of the clustering length, r0 = 7.2–9.3 h−1 Mpc, is consistent with

highly biased massive galaxies. Our small-scale angular clustering

measurements are not affected by redshift-space distortions, since

the photo-z errors are much bigger than the peculiar velocities of

the galaxies. Correlated redshift-space distortions are important on

larger scales, however, as discussed in Blake et al. (2007) and Pad-

manabhan et al. (2007).

The clustering amplitude systematically increases with redshift

for the following two reasons.

(i) Each volume-limited sample in successive redshift slices has

the same limiting apparent magnitude hence higher luminosity

threshold. The higher-redshift galaxies are hence preferentially

more luminous and more strongly clustered (e.g. Norberg et al.

2002; Zehavi et al. 2005b). In Table 1, we list the threshold absolute

i-band magnitude Mi of galaxies in each redshift slice, calculated

using an LRG K-correction (Wake et al. 2006).

(ii) In standard models of the evolution of galaxy clustering, the

bias factor of a class of galaxies increases with redshift in opposi-

tion to the decreasing linear growth factor, in order to reproduce the

observed approximate constancy of the small-scale comoving clus-

tering length (e.g. Lahav et al. 2002). Simple models for this effect

such as b(z) = 1 + (b0 − 1)/D(z) (Fry 1996) or b(z) = b0/D(z),

where D(z) is the linear growth factor, predict an evolution in bias

across our analysed redshift range of �b ≈ 0.2.

These trends are in good agreement with our measurements of the

amplitude of the large-scale clustering pattern (Blake et al. 2007).

4 H A L O - M O D E L F R A M E WO R K

We use the halo model of galaxy clustering to produce model spatial

correlation functions ξ (r) to fit to our measurements. We summarize

the ingredients of our model here. Further details can be found

in, for example, Seljak (2000), Cooray & Sheth (2002), Berlind &

Weinberg (2002), Kravtsov et al. (2004), Zehavi et al. (2004), Zheng

(2004), Zehavi et al. (2005b) and Tinker et al. (2005).

In the halo-model framework, the clustering functions are ex-

pressed as a sum of components due to pairs of galaxies within

a single dark matter halo (the ‘one-halo term’ ξ 1) and to pairs of

galaxies inhabiting separate haloes (the ‘two-halo term’ ξ 2):

ξ (r ) = [1 + ξ1(r )] + ξ2(r ) (5)

where the ‘1+’ at the start of the expression arises because the total

number of galaxy pairs (∝ 1 + ξ ) is the sum of the number of pairs

from single haloes (∝ 1 + ξ 1) and from different haloes (∝ 1 + ξ 2).

The two terms dominate on different scales, with the one-halo term

only important on small scales �1 Mpc.

The fundamental ingredient of the galaxy halo model is the HOD,

which describes the probability distribution for the number of galax-

ies N hosted by a dark matter halo as a function of its mass M. In

order to construct the one-halo and two-halo two-point clustering

terms, we require the first and second factorial moments of the HOD,

〈N | M〉 and 〈N(N − 1) | M〉. We make the assumption that the first

galaxy to be hosted by a halo lies at the centre of the halo, and any

remaining galaxies are classified as ‘satellites’ and distributed in

proportion to the halo mass profile. We apply different HODs for

the central and satellite galaxies, 〈Nc | M〉 and 〈Ns | M〉, respectively,

where

〈N | M〉 = 〈Nc | M〉(1 + 〈Ns | M〉) (6)

Equation (6) takes its form because a halo can only host a satellite

galaxy if it already contains a central galaxy. We will use the notation

Nc(M) = 〈Nc | M〉, Ns(M) = 〈Ns | M〉 and N (M) = 〈N | M〉 in the

equations that follow.

4.1 The one-halo term ξ1(r )

The one-halo galaxy correlation function is composed of contri-

butions from central–satellite pairs and satellite–satellite pairs. It

is convenient to evaluate these two contributions separately. The

one-halo correlation function for central–satellite pairs is given by

1 + ξ1,c−s(r ) =
∫ ∞

Mvir(r )

dM n(M)
Nc(M)Ns(M)

n2
g/2

ρ(r |M)

M
, (7)

where ng is the galaxy number density, n(M) is the halo mass func-

tion, and ρ(r | M) is the halo density profile. The lower limit for the

integral is the halo mass M corresponding to a virial radius r, given

that less-massive haloes have smaller radii and cannot contribute

any central–satellite galaxy pairs with a separation r:

Mvir(r ) = 4

3
πr 3ρ�, (8)

where ρ = 2.78 × 1011�m h2 M� Mpc−3 is the co-moving back-

ground density of the Universe, and � = 200 is the critical over-

density for virialization.

It is simplest to evaluate the one-halo correlation function for

satellite–satellite pairs in a Fourier space (where convolutions be-

come multiplications). The power spectrum is

P1,s−s(k) =
∫ ∞

0

dM n(M)
Nc(M)N 2

s (M)

n2
g

|u(k | M)|2, (9)

where u(k | M) is the Fourier transform of the halo density profile

ρ(r | M). Because satellite galaxies are Poisson-distributed, we can

write 〈Ns(Ns − 1)〉 = 〈Ns〉2 to obtain the above equation. The cor-

relation function corresponding to equation (9) is then

ξ1,s−s(r ) = 1

2π2

∫ ∞

0

dk P1,s−s(k) k2 sin kr

kr
. (10)

The total one-halo correlation function is then derived as

ξ1 = ξ1,c−s + ξ1,s−s (11)

4.2 The two-halo term ξ2(r )

The two-halo galaxy correlation function at a separation r is evalu-

ated from the scale-dependent two-halo power spectrum P2(k, r):

P2(k, r ) = Pm(k)

×
[∫ Mlim(r )

0

dM n(M) b(M, r )
N (M)

n′
g(r )

u(k | M)

]2

, (12)

where Pm(k) is the non-linear matter power spectrum at the survey

redshift, b(M, r) is the scale-dependent halo bias at separation r, and

n′
g(r) is the restricted galaxy number density at a separation r:

n′
g(r ) =

∫ Mlim(r )

0

dM n(M)N (M). (13)
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The mass truncation Mlim(r ) must be included to incorporate the

effects of halo exclusion: more massive haloes would overlap at

separation r. We derive the mass limit using the ‘n′
g-matched’ ap-

proximation described in Tinker et al. (2005). First, we calculate

the restricted number density using equation (B13) in Tinker et al.,

which includes the effects of triaxility:

n′
g(r ) =

∫ ∞

0

dM1n(M1)N (M1)

×
∫ ∞

0

dM2n(M2)N (M2)P(r , M1, M2), (14)

where P(r , M1, M2) quantifies the probability of non-overlapping

haloes of masses M1 and M2 with separation r . Defining

x = r/(R1 + R2), where R1 and R2 are the virial radii corresponding

to masses M1 and M2, and using y = (x − 0.8/0.29), then Tinker

et al. obtain P(y) = 3y2 −2y3 from simulations. Given this value of

n′
g(r ), we increase the value of Mlim(r ) in equation (13) to produce

a matching number density. This value is then used in equation (12)

to produce the two-halo power spectrum P2(k, r ).

Following Tinker et al. (2005), we assumed the following model

for the scale-dependent bias:

b2(M, r ) = b2(M)
[1 + 1.17 ξm(r )]1.49

[1 + 0.69 ξm(r )]2.09
, (15)

where ξm(r) is the non-linear matter correlation function. We derived

matter power spectra using the ‘CAMB’ software package (Lewis,

Challinor & Lasenby 2000), including corrections for non-linear

growth of structure using the fitting formulae of Smith et al. (2003)

(‘halofit=1’ in CAMB). We output power spectra at the mean redshift

of each slice, and obtained the correlation function using a Fourier

transform. The two-halo galaxy correlation function is obtained via

the Fourier transform of equation (12):

ξ ′
2(r ) = 1

2π2

∫ ∞

0

dk P2(k, r ) k2 sin kr

kr
, (16)

with the number of galaxy pairs corrected from the restricted galaxy

density to the entire galaxy population:

1 + ξ2(r ) =
[

n′
g(r )

ng

]2

[1 + ξ ′
2(r )]. (17)

4.3 Halo mass and bias functions

The halo mass function, n(M), describes the number density of

haloes as a function of mass M. We introduce the new mass variable

ν following Press & Schechter (1974):

n(M) dM = ρ

M
f (ν) dν. (18)

The new mass variable ν is defined by ν = [δsc/σ (M, z)]2, where

δsc is the linear-theory prediction for the present-day overdensity of

a region which would undergo spherical collapse at redshift z, and

σ 2(M, z) is the variance of the linear power spectrum in a spherical

top hat which contains average mass M:

σ 2(M, z) = [D(z)2/2π2]

∫ ∞

0

dkk2 Plin(k)W 2(k R), (19)

where W (x) = (3/x3)[sin x − x cos x], M = (4/3)πR3ρ, D(z) is

the linear growth factor at redshift z, and Plin(k) is the linear power

spectrum at redshift zero. We approximate δsc = 1.686 indepen-

dently of redshift. We use the Jenkins et al. (2001) model for the

mass function:

ν f (ν) = (1/2)a1 exp
[ − | ln(

√
ν/δsc) + a2|a3

]
(20)

where a1 = 0.315, a2 = 0.61 and a3 = 3.8.

The halo bias function b(M) describes the biasing of a halo of

mass M with respect to the overall dark matter distribution. We use

the Sheth, Mo & Tormen (2001) model for the bias function with

the revised parameters stated in Tinker et al. (2005):

b(ν) = 1 + 1

δsc

×
{

qν + s(qν)1−t − q−1/2

1 + s(1 − t)[1 − (t/2)](qν)−t

}
,

(21)

where the constants q = 0.707, s = 0.35 and t = 0.8.

4.4 Halo profiles

We use the Navarro, Frenk & White (1997) dark matter halo density

profile:

ρ(r ) = ρs

(r/rs)(1 + r/rs)2
(r < rvir), (22)

where rs is the characteristic scale radius and ρs provides the nor-

malization. The profile is truncated at the virial radius rvir, which is

obtained from the halo mass via

rvir =
(

3M

4π�ρ

)1/3

. (23)

We parametrize the profile in terms of the concentration parameter
c = rvir/rs. The normalization for the mass M is

M =
∫ rvir

0

ρ(r )4πr 2 dr = 4πρsr
3
s

[
ln (1 + c) − c

1 + c

]
. (24)

We assume that the concentration parameter c depends on halo mass

M in a manner calibrated by numerical simulations (Bullock et al.

2001; Zehavi et al. 2004):

c(M, z) = [11/(1 + z)](M/M0)−0.13 (25)

where M0 is obtained from equation (19) by setting σ (M0, 0) =
δsc. For our adopted cosmological model we obtain M0 =
12.64 h−1 M�, resulting in a concentration c = 5 for a halo of

mass M = 1014 h−1 M� at z = 0.5. This assumption is consistent

with the measurement by Mandelbaum et al. (2006b) of the concen-

tration parameter for LRGs using galaxy–galaxy weak lensing.

4.5 Halo occupation distribution

The HOD is a parametrized description of how galaxies populate

dark matter haloes as a function of the halo mass M. As described

above, we separate the distribution into separate HODs for central

galaxies and for satellite galaxies. We adopt simple models mo-

tivated by results from simulations and semi-analytic calculations

(e.g. Kauffmann, Nusser & Steinmetz 1997; Benson et al. 2000;

Berlind et al. 2003; Kravtsov et al. 2004).

For central galaxies, our basic model is a step function such that

haloes above a minimum mass threshold, Mcut, contain a single

central galaxy and haloes below this threshold contain no galaxies.

However, our observational data consist of galaxy luminosities (with
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a scatter resulting from the photo-z errors) rather than galaxy masses.

We therefore follow Zheng et al. (2005) and ‘soften’ the transition

from zero to one galaxy with a further parameter σ cut such that

〈Nc | M〉 = 0.5

[
1 + erf

(
log10(M/Mcut)

σcut

)]
. (26)

The scatter in halo mass for a fixed galaxy luminosity results from

galaxy formation physics and (in the case of this study) from photo-z
errors.

For satellite galaxies, a power law in mass provides a good de-

scription for the mean occupation number in simulations:

〈Ns | M〉 =
(

M

M0

)β

. (27)

Introducing a ‘cut-off’ to the satellite HOD of the form

〈Ns | M〉 =
(

M − M1

M0

)β

(28)

(Zheng et al. 2005) did not significantly improve the fit of the model

to the data. Our halo-model power spectrum is hence specified by

four variables: Mcut, σ cut, M0 and β.

In addition we must satisfy one extra constraint: the galaxy num-

ber density

ng =
∫ ∞

0

dM n(M)N (M) (29)

must match the observed number density in each redshift slice. We

match this constraint by fixing the variable Mcut for each choice of

σ cut, M0 and β. Our model hence contains three independent param-

eters. Fig. 5 displays an example halo-model correlation function

and the component one-halo and two-halo terms.

Useful quantities which can be derived from the HOD are the

effective large-scale bias

bg =
∫

dM n(M) b(M)
N (M)

ng

, (30)

and the effective mass Meff of the HOD

Meff =
∫

dM M n(M)
N (M)

ng

. (31)

Figure 5. An example halo-model galaxy correlation function at z = 0.5 for

parameters σcut = 0.3, log10(M0/h−1 M�) = 14.3 and β = 1.5. Matching

galaxy density ng = 5 × 10−4 h3 Mpc−3 requires log10(Mcut/h−1 M�) =
12.98. The separate one-halo and two-halo components are shown, which

cross over in dominance at a scale ∼1 h−1 Mpc. This model has a linear bias

bg = 1.82 and an effective halo mass log10(Meff/h−1 M�) = 13.48.

We can also determine the average fraction of central or satellite

galaxies in the sample, for example, for central galaxies

fc =
∫

dM n(M) Nc(M)∫
dM n(M) (Nc(M)[1 + Ns(M)]

(32)

and f s = 1 − f c for satellite galaxies.

4.6 Conversion to angular correlation function

Knowing the redshift distribution p(z) of a galaxy population, we

can project the spatial galaxy correlation function ξ (r) to an angular

correlation function w(θ ) using Limber’s equation:

w(θ ) = 2

∫ ∞

0

dx f (x)2

∫ ∞

0

du ξ (r =
√

u2 + x2θ2), (33)

where f(x) describes the radial distribution of sources as

f (x) = p(z)

dx/dz(z)
, (34)

where z is the redshift corresponding to comoving radial coordinate

x(z).

5 PA R A M E T E R F I T S

We fitted the three-parameter halo model (σ cut, M0, β) to the ob-

served angular correlation functions in each redshift slice, fixing

the remaining parameter Mcut by matching to the observed galaxy

number density ng. We used a combination of a coarse grid-based

search and a downhill-simplex method to locate the minimum value

of the χ 2-statistic, using the full covariance matrix. We then em-

ployed a fine grid-based method to explore the χ2-surface around

the minimum and determined the errors in the fitted parameters

(by marginalizing over the other model parameters). The mean and

standard deviation of each model parameter, marginalizing over the

other parameters, is listed in Table 2.

In Fig. 6, we plot the best-fitting halo-model correlation func-

tions together with the data. We divide the results by the best-fitting

power-law model from Section 3.3 for increased clarity. We note

immediately that the halo-model framework has successfully re-

produced the deviations from the power law, owing to the separate

contributions of the one-halo and two-halo terms. The result is a

good fit of model to data, with the addition of only one extra param-

eter compared to the original power-law fit. The minimum values

of χ 2 are around 30 (for 24 degrees of freedom). Inspection of

Fig. 6 reveals that the best-fitting model always describes the transi-

tion region between the one-halo and two-halo terms very well, and

that the main source of discrepancy is at very small scales (<200

kpc) where the data points lie systematically above the model pre-

diction.

In Table 2, we also list the derived values of the galaxy bias factor

bg and effective halo mass Meff for each redshift slice (calculated

using equations 30 and 31). The errors in these quantities are ob-

tained by evaluating their values over the fine grid of halo-model

parameters and weighting by the appropriate probability for the fit

of model to data at each grid point. The range of linear bias, in-

creasing with redshift from bg ≈ 1.92 (at z = 0.475) to bg ≈ 2.62 (at

z = 0.625), agrees well with fits to the large-scale power spectrum of

the LRGs (Blake et al. 2007), allowing for the differing values of the

normalization σ 8 [in this study we have assumed σ 8 = 0.8, whereas

the bias values in Blake et al. (2007) are quoted for σ 8 = 1]. The

effective mass, ranging from Meff = 1013.61–1013.80 h−1 M� over

the same redshift range, confirms that LRGs are hosted by massive
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Table 2. Halo-model fits to the angular correlation function in the four redshift slices. Column 2 records the observed galaxy number density which our models

are constrained to match. Columns 3, 4 and 5 list the best-fitting values and errors of the halo-model parameters σ cut, M0 and β defined by equations (25) and

(26). Column 6 displays the inferred value of the final halo-model parameter Mcut. In Columns 7 and 8, we evaluate the corresponding galaxy bias factor bg

(equation 30) and effective halo mass Meff (equation 31). Column 9 records the minimum value of the χ2-statistic for the halo model, χ2
halo, evaluated using

the full covariance matrix (which we compare with 24 degrees of freedom). Base-10 logarithms are used in this table.

Redshift slice 104 × ng σ cut log (M0/ M� h−1) β log (Mcut/M� h−1) bg log (Meff/M� h−1) χ2
halo

(h3 Mpc−3)

0.45 < z < 0.5 5.03 0.21 ± 0.11 14.09 ± 0.01 1.57 ± 0.02 12.98 1.92 ± 0.02 13.61 ± 0.01 22.1

0.5 < z < 0.55 3.07 0.07 ± 0.07 14.22 ± 0.01 1.69 ± 0.04 13.12 2.15 ± 0.01 13.67 ± 0.01 28.3

0.55 < z < 0.6 1.60 0.24 ± 0.12 14.39 ± 0.01 1.87 ± 0.07 13.35 2.38 ± 0.04 13.74 ± 0.01 36.8

0.6 < z < 0.65 0.56 0.53 ± 0.14 14.76 ± 0.10 1.80 ± 0.36 13.79 2.62 ± 0.09 13.80 ± 0.03 40.1

Figure 6. The measured angular correlation functions in the four redshift slices together with the best-fitting halo models. The y-axis is the ratio of the angular

correlation function w(θ ) and the best-fitting power-law model in each slice (from Section 3.3). The comoving spatial scale corresponding to an angular

separation of 0.◦1 at the median redshift of each slice is displayed in the bottom left-hand corner of each plot. A flat � cold dark matter universe is assumed

with cosmological parameters �m = 0.3, h = 0.7, �b/�m = 0.15, σ 8 = 0.8 and ns = 1.

dark matter haloes and are highly biased tracers of the clustering

pattern. Our values for the effective mass are in the same range as

the LRG halo mass measured by Mandelbaum et al. (2006b) using

galaxy–galaxy lensing (M = 1013.83 h−1 M� for the bright sample of

Mandelbaum et al.). We note that the systematic increase in galaxy

bias in each redshift slice is driven more by the increasing luminosity

threshold rather than redshift evolution.

Fig. 7 plots the statistical range of allowed halo occupation

distributions 〈N |M〉 in each of the four redshift slices assuming the

parametric description of equations (26) and (27). The parameters

σcut, M0 and β were varied over a grid and the probability deter-

mined at each grid point using the χ2 statistic. This probability

distribution was used to construct the mean and standard deviation

of the value of 〈N |M〉 as a function of halo mass M . For example,

the average number of our galaxy sample hosted by a halo of mass

M = 1014.5 h−1 M� is (5.5, 4.1, 2.6, 1.4) in the four redshift slices,

decreasing systematically with redshift as the threshold luminosity

increases. Broadly speaking, the effect of increasing luminosity is

to shift the HOD to higher masses without significantly changing

its shape, that is, shifting to the right-hand side in Fig. 7 in a similar

fashion for central and satellite galaxies. If we weight the HOD by

Figure 7. The range of halo occupation distributions fitted to each of the

four redshift slices (with each subsequent slice shifting from left to right in

the figure) assuming the parametric description of equations (26) and (27).

This figure was generated by varying the parameters σ cut, M0 and β over a

grid and determining the relative probability at each grid point using the χ2

statistic. At each halo mass M, the probability distribution within the model

parameter space was used to construct the mean HOD (the solid line) and

the 68 per cent confidence region (the dotted lines).
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the mass function of haloes which steeply decreases with increasing

mass, we find that the fraction of galaxies that are classified as central

galaxies is very high: f c = (0.88, 0.90, 0.93, 0.97) in the four redshift

slices. This agrees with the standard picture of LRGs forming at the

heart of massive dark matter haloes.

The best-fitting value of β, the slope of the power-law HOD for

satellite galaxies, increases systematically with redshift. The most

important cause of this trend is evolution of β with luminosity, as

measured at low redshift (Zehavi et al. 2005b). Investigating this fur-

ther, we refitted the halo-model parameters in each of the redshift

slices for each of the absolute i-band magnitude thresholds Mi −
5 log10 h = (−22.23, −22.56, −22.87, −23.20) which correspond

to the luminosity thresholds of the four redshift slices. Hence,

all redshift slices can provide a sample with Mi − 5 log10 h <

−23.20, but only the first redshift slice contributes a sample with

Mi − 5 log10 h < −22.23. We obtained the probability distribu-

tion for β for each halo-model fit, marginalizing over the other

model parameters, and combined the results for matched lumi-

nosity samples in different redshift slices. We find that the mea-

surements of β at a fixed luminosity threshold agree well be-

tween the redshift slices, and the combined result for the four

luminosity thresholds listed above is β = (1.57 ± 0.02, 1.68 ±
0.03, 1.91 ± 0.05, 2.15 ± 0.14), confirming a significant evo-

lution of β with luminosity. Considering just the first redshift

slice, the best-fitting effective halo mass for the four luminosity

slices is log10(Meff/h−1 M�) = (13.61, 13.73, 13.88, 14.02) cor-

responding to number densities ng = (5.03, 2.45, 1.02, 0.32) ×
10−4 h3 Mpc−3.

Our results have a significant dependence on the assumed

value of σ 8 = 0.8, which sets the overall normalization of the

matter power spectrum. For σ 8 = 0.7, the best-fitting effective halo

mass in each of the four redshift slices is log10(Meff/h−1 M�) =
(13.48, 13.54, 13.61, 13.68). For σ 8 = 0.9, the results are (13.72,

13.79, 13.85, 13.95). In all cases the minimum values of χ2 are simi-

lar to those obtained for our default value of σ 8, suggesting that there

is a strong degeneracy between σ 8 and the halo-model parameters

used in this analysis. The changing σ 8 affected the best-fitting value

of M0 much more strongly than the value of β. We also tried low-

ering the value of the scalar spectral index of the primordial power

spectrum from ns = 1 to 0.95, as supported by recent observations

of the CMB radiation (Spergel et al. 2007). Assuming σ 8 = 0.8,

the best-fitting effective masses were (13.59, 13.66, 13.72, 13.78)

which do not differ significantly from our default values presented

in Table 2.

6 C O M PA R I S O N TO P R E V I O U S WO R K

Several previous studies have fitted halo-model parameters to popu-

lations of red galaxies, for example, Magliocchetti & Porciani (2003,

2dFGRS), Zehavi et al. (2004, 2005b, SDSS), Collister & Lahav

(2005, 2dFGRS groups catalogue), Phleps et al. (2006, COMBO-17

survey) and White et al. (2007, NDWFS). We make comparisons to

these analyses below, where possible.

Halo-model fits to the 2dFGRS galaxy correlation function for

late-type and early-type galaxies were performed by Magliocchetti

& Porciani (2003). In addition, Collister & Lahav (2005) directly in-

vestigated the distribution of galaxies within 2dFGRS groups. These

two studies produced a reasonably consistent measurement of the

slope β ≈ 1 of the HOD at high masses for early-type galaxies.

Our best-fitting slope, β = 1.5–2.0, is much higher due to the fol-

lowing two factors. (1) The significantly higher luminosity of our

galaxy samples; and (2) we make the distinction between central

and satellite galaxies, separating out a central galaxy contribution

Nc ≈ 1 at high masses. The latter has the effect of significantly

steepening the slope of the power-law HOD fitted to the remaining

satellite galaxies (which in fact contribute only 5–10 per cent of our

sample, as noted in Section 5). In other words, we effectively fit a

model N = Nc (1 + Ns) = 1 + (M/M0)β at high masses, rather than

N = (M/M0)β .

Zehavi et al. (2004) analysed a luminous subset of galaxies from

the SDSS ‘main’ spectroscopic data base with Mr < − 21 and mean

redshift z ≈ 0.1. They found that an HOD of the form

〈N | M〉 = 0 (M < Mcut)

= 1 (Mcut < M < M0)

= (M/M0)β (M > M0) (35)

produced a good fit to the clustering data, where Mcut =
1012.79 h−1 M�, M0 = 1013.68 h−1 M� and β = 0.89. The effective

mass corresponding to these parameters is Meff = 1013.83 h−1 M�
(for their choice of σ 8 = 0.9). The number density of the Zehavi

et al. (2004) sample is ng = 9.9 × 10−4 h3 Mpc−3, which is a factor

of 2–3 higher than our study. Although the effective masses are sim-

ilar, we note that the redshift difference between the Zehavi et al.

(2004) sample and ours may be important; the number density of a

sample of dark matter haloes of fixed mass increases with decreas-

ing redshift owing to the growth of structure. The difference in the

best-fitting value of the power-law slope between Zehavi et al. and

our analysis is again connected to the different forms of HOD fitted

(owing to our central galaxy contribution, as discussed above).

Zehavi et al. (2005b) presented an extended analysis of the SDSS

data in which central and satellite galaxy contributions are consid-

ered separately. Their default model includes a sharp cut-off for the

central galaxy HOD at a fixed mass, rather than our ‘softened’ tran-

sition from 0 to 1 galaxies. They find that the slope of the power-law

satellite HOD increases systematically with luminosity in a man-

ner entirely consistent with our high-luminosity measurements of

β = 1.5–2.0. In addition, Zehavi et al. (2005b) note that the step

function for 〈Nc | M〉 produces a poor fit to the data in their highest-

luminosity bin, consistent with our requirement for a softened tran-

sition parametrized by σ cut. They also find, in agreement with our

analysis, that the great majority of luminous galaxies are central

galaxies of their host dark matter haloes, rather than satellites in more

massive systems. A low (�10 per cent) satellite fraction for the most-

luminous elliptical galaxies is also found in galaxy–galaxy lensing

studies (Seljak et al. 2005; Mandelbaum et al. 2006a) and other

clustering studies (Tinker et al. 2007; van den Bosch et al. 2007).

Phleps et al. studied various populations of galaxies in the

COMBO-17 survey at a mean redshift of z = 0.6 which is

similar to our data set. For red-sequence galaxies, Phleps et al.

quote an effective halo mass for their best-fitting model of Meff =
1013.2 h−1 M�, whereas we find Meff = 1013.7 h−1 M� (Table 2).

This apparently large discrepancy is caused by the significant dif-

ference in the luminosity threshold of the two samples: the number

density of our LRG catalogue is more than an order of magnitude

smaller (there is also a difference in the assumed value of σ 8).

White et al. (2007) fitted an HOD model to the clustering of LRGs

in the NOAO Deep Wide-Field Survey (NDWFS) Bootes field of

9 deg2, analysed in redshift slices between z = 0.4 and 1.0. The

luminosity thresholds are fixed such that the galaxy number density

in each redshift slice is 10−3 h3 Mpc−3, exceeding our sample by a

factor of ≈3 at z = 0.5. White et al. demonstrated that the clustering

of the z = 0.5 sample cannot be accounted for by simple passive

evolution of the z = 0.9 sample, but rather there must be merging or
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disruption of the most-luminous satellite galaxies in massive haloes.

The best-fitting satellite fraction in the NDWFS sample is found to

be 18 per cent, a little higher than the results of our study, but

consistent with a trend in which satellite fraction decreases with

increasing luminosity.

In conclusion, our halo-model parameter measurements appear

broadly consistent with previous work, allowing for differing lumi-

nosity thresholds. A fully consistent comparison of our analysis at

z ≈ 0.55 with results at z ≈ 0 is beyond the scope of this work,

owing to the differing forms of HOD assumed by different authors,

but a topic worthy of further investigation.

Measurements of the three-point clustering functions will add

further insight into the LRG clustering properties. Recent work by

Kulkarni et al. (2007), analysing the SDSS spectroscopic LRG sam-

ple at z ≈ 0.35, favoured a shallower slope for the satellite HOD,

β ≈ 1.4, with a higher satellite fraction of 17 per cent. Further study

is required to understand these differences.

7 T E S T S F O R S Y S T E M AT I C P H OTO M E T R I C
E R RO R S

We performed a series of tests for potential systematic photometric

errors that may affect our clustering results. Following the discussion

in Blake et al. (2007), we compared the angular correlation function

measured for the ‘default’ sample with that obtained by restricting

or extending the galaxy selection in the following ways.

(i) Exclusion of areas of high dust extinction (>0.1 mag);

(ii) exclusion of areas of poor astronomical seeing (>1.5 arcsec);

(iii) exclusion of areas lying in the overlap regions between sur-

vey stripes.

(iv) Exclusion of areas in the vicinity of very bright objects (cir-

cular masks of radius 1 arcmin around objects with i < 12); and

(v) variations in the star–galaxy separation criteria. This is quan-

tified by the coefficient δsg in Blake et al. (2007) and Collister et al.

(2007), which fixes the aggressiveness of the star–galaxy separation

Figure 8. The dependence of the angular correlation function measurement in four redshift slices on varying dust extinction and astronomical seeing. Results

from the default catalogue are compared to an analysis restricting the regions analysed to (1) a maximum dust extinction of 0.1 mag, or (2) a maximum seeing

of 1.5 arcsec. The y-axis is the angular correlation function w(θ ) divided by a power-law fit to the default model.

in the neural network. Our default choice is δsg > 0.2, which results

in a level of stellar contamination of 1.5 per cent with the loss of only

∼0.1 per cent of the genuine galaxies (see fig. 13 in Collister et al.

2007). We also tried δsg > 0 (no additional star–galaxy separation

in the neural network; stellar contamination 4.4 per cent) and δsg >

0.8 (stellar contamination 0.4 per cent; loss of 1.2 per cent genuine

galaxies).

We refer the reader to Blake et al. (2007) for a more thorough dis-

cussion of the possible effects of these systematic errors.

Our results are presented in Figs 8–10. Each plot is composed

of four panels, one for each redshift slice. In each panel we show

the angular correlation function for the default sample together with

that corresponding to a change in the galaxy selection criteria. We

divide all the correlation functions by a power-law fit to the default

measurement to render the results more easily comparable.

We conclude from Figs 8 and 9 that our results are robust against

the details of the angular selection function: varying dust extinction,

seeing, overlap regions and bright object masks all have little effect

on the measured correlation function. Fig. 10 reveals that the details

of the star–galaxy separation affect the amplitude of the measured

correlation function although not (to first order) the shape. This

amplitude shift is already encoded in the stellar contamination factor

(1 − f )2. In no case does a change in the galaxy selection alter the

detectability or shape of the halo-model signature.

8 C O N C L U S I O N S

We have measured the angular correlation function of LRGs in the

SDSS imaging survey, using accurate photometric redshifts to divide

the galaxies into narrow redshift slices and create volume-limited

samples. We find the following.

(i) A canonical power-law fit provides a poor description of the

small-scale angular correlation function, although the best-fitting

slope w(θ ) ∝ θ−0.95 agrees well with previous studies of LRGs.
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Figure 9. The dependence of the angular correlation function measurement in four redshift slices in the presence of bright objects and stripe overlap regions.

Results from the default catalogue are compared to (1) an analysis placing circular masks of radius 1 arcmin around all objects with i-band magnitudes brighter

than 12, and (2) an analysis excluding overlap regions between stripes. The results are displayed in the same manner as Fig. 8.

Figure 10. The dependence of the angular correlation function measurement in four redshift slices on the star–galaxy separation criteria. Results from the

default catalogue are compared to analyses changing the value of the coefficient δsg defined in Blake et al. (2007) and Collister et al. (2007), which controls the

aggressiveness of the star–galaxy separation. The results are displayed in the same manner as Fig. 8.

(ii) The halo model of galaxy clustering, composed of separate

one-halo and two-halo contributions, produces a good fit to the devi-

ations from a power law. We assume an HOD with separate compo-

nents for central and satellite galaxies, implementing realistic mod-

els for scale-dependent bias, halo exclusion and non-linear growth

of structure. We find that the HOD for central galaxies requires a

‘soft’ transition from zero to one central galaxy, as opposed to a step

function, to reproduce the observations. The functional form Nc =
0.5 {1 + erf [log10(M/Mcut)/σ cut]} provides a good fit for central

galaxies, combined with a power-law HOD for satellite galaxies

Ns = (M/M0)β . One parameter of the model (Mcut) is fixed by the

overall number density of the galaxy sample; hence, this halo model

contains three variable parameters (σ cut, M0 and β), just one more

than a simple power law. Allowing the concentration parameter c to

vary, or including a more sophisticated HOD for satellite galaxies,

does not improve the model fits.

(iii) The slope β of the power-law HOD for satellite galaxies is

a strong function of luminosity, increasing to β ≈ 2 for our most-

luminous sample. This is consistent with extrapolating the variation

of β with luminosity in local samples (Zehavi et al. 2005b). The
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physical implication of this result is that haloes of higher mass have

greater relative efficiency at producing high-luminosity satellites.

We find no variation of β with redshift across our sample (from

z = 0.45 to 0.65).

(iv) The best-fitting width σ cut of the transition from zero to one

central galaxy with increasing mass is in the range σ cut = 0.1–

0.5 (this is the parameter least well constrained by our analysis).

The physical implication of this result is a broad scatter between

central galaxy luminosity and host halo mass. This scatter results

from galaxy formation physics and from the photo-z error in the

conversion of apparent magnitude to luminosity.

(v) The halo-model fits describe how LRGs populate dark matter

haloes as a function of their mass M. The average number of our

galaxy sample hosted by a halo of mass M = 1014.5 h−1 M� is (5.5,

4.1, 2.6, 1.4) in the four redshift slices, decreasing systematically

with redshift as the threshold luminosity increases. Broadly speak-

ing, the effect of increasing luminosity is to shift the HOD uniformly

to higher masses without significantly changing its shape. The large

majority of galaxies in our sample are classified as central galax-

ies of their host dark matter haloes, rather than satellites in more

massive systems, in agreement with previous studies of galaxy–

galaxy lensing and clustering of the most-luminous galaxies. The

satellite fraction varies in the range 3–12 per cent across the redshift

slices.

(vi) The halo-model fits provide robust predictions of the average

linear bias of the LRGs on large scales and the effective mass of their

host dark matter haloes. The resulting amplitude of the linear bias

(bg = 1.9–2.6, increasing with redshift, assuming a normalization

of the matter power spectrum σ 8 = 0.8) agrees well with fits to the

large-scale power spectrum (Blake et al. 2007). The effective halo

mass (Meff = 1013.7–1013.8 h−1 M�) provides a quantitative state-

ment of how the LRGs trace the underlying dark matter haloes. The

value of Meff has a significant dependence on σ 8, and a weak depen-

dence on the slope of the primordial scalar index ns: the effective

mass increases by �log10(Meff/h−1 M�) ≈ 0.1 when the value of σ 8

is increased from 0.8 to 0.9, and decreases by �log10(Meff/h−1 M�)

≈ 0.02 when ns is decreased from 1.0 to 0.95.

Future studies will explore joint fits of the cosmological param-

eters and halo-model parameters (Abazajian et al. 2005; Zheng &

Weinberg 2007), direct measurement of halo occupation via a clus-

ter and group-finding analysis of the photo-z catalogue, a consistent

comparison of clustering of LRGs at z ≈ 0.5 and at z ≈ 0, and test-

ing the halo model further via three-point clustering statistics and

higher moments.
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